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SECTION 1
INTRODUCTION

In this report we shall describe a method for calculating the propagation
of elastic waves. The method, the phase-screen method, has some relation to WKBJ
and other high frequency methods; the details are quite different. The wave equations
of elastodynamics are solved exactly, the approximation being made on the medium
through which the waves propagate rather than on the solutions to the dynamical
equations themselves. While the method can be used to calculate the propagation
through a complex medium with a known spatial distribution of elastic parameters
(an example is given below), probably the most common use of the method in previous
work has been to study the propagation of waves in stochastic media where only
statistical properties of the media are known; it is this last application we have in
mind here.

The method is not new. It has been used for many years by astronomers
to estimate the effects of the atmosphere on the propagation of starlight, Ratcliffe
[1956], by engineers to study the effects of structure on the propagation of signals
from communication satellites, Knepp [1983], by acoustical engineers to study the
propagation of sound in the ocean, Flatté [1983] and Martin and Flatté [1988], and
for other purposes. All of the past studies of which we are aware have considered
only the case of scalar waves. Here we shall formulate the problem for the case of
vector elastic waves; indeed it is the interconversion of transverse and longitudinal
components that provides a major focus of the study.

Consider a simple plane wave (k = w/c), where a harmonic time dependence
of frequency w is assumed propagating in a medium with sound speed e.

W
I—2

p=eccC . (1)

If we use that solution as an appraximation in a medium with scund speed ¢', we find
that at any fixed = the relation between the approximate solution, ¢, and the exact
solution, ¢, is just a phase

v=e ¢ ¢ (3)




In this simplest example the effect of a velocity anomaly is just to advance or retard
the phase of the wave; that is the central approximation in the phase-screen method:
we assume that the effect of velocity anomalies is to retard or advance the phase of
the wave.

Now consider the situation depicted in figure 1. A wave is propagating from
z = 0to z = Az through a medium whose mean sound speed is ¢ with velocity anoma-
lies é¢(z,y, z) present. Our first appraximation is that the effect of the anomalies is
to multiply the solution at Az by an x-y-dependent phase factor given by

. w . [bs dz'
exp (1A(z,y)) = exp [—a—_é—Az + :w[c W} . (3)

Thus the problem shown in figure 1 has been replaced by that shown in figure 2 where
the propagation from 0 to z = Az_ is through a medium with a constant sound speed
€. The result is then multiplied by a phase factor given by (3) to obtain the wave at
= Al+.

To this point we have considered the case where at z = 0 we had a simple
plane wave but for more complex cases where the solution at z = 0 is a function of
x and y we will use the same procedure of figure 2: propagate through a uniform
mediumn to 2 = Az_ then correct the phase at z = Az,. With that generalization
we have the possibility of repeating the procedure, inserting phase screens at other
larger values of 2. That possibility brings up the other approximation we must make:
we must make the problemn parabolic; that is to say, we wish to have a formulation
such that the value of the wave function at some fixed z determines the value at
larger z's. Since the wave equation is second order in each spatial variable that is
not the usual case; usually an initial value problem would require specification of two
functions (e.g. ¢ and 3,4) at a fixed z in order to determine the solution. As an
alternative we can specify the value of the function on two planes corresponding to
different values of z. What we shall do is a variant of this last possibility: we shall
use the value of the function at z == 0 and impose outgoing boundary conditions at
z — o0, That formulates a well-posed boundary value problem and allows us to solve
for the function at Az,. A standard way to solve such a problem is to decompose
the value of the function at z = 0 into a set of plane waves whose propagation vector
points into the right-hand cone. Thus we make the problem parabolic by a procedure
which can be stated one of iwo equivalent ways: we use the value of the function at
& = 0 plus a boundary condition at 2 — oo; or, we use the value of the function at
z = 0 plus the assumption of forward propagating waves.
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Figure 1. Propagation of the wave through a segment of inhomogeneous
medium alters the phase of the wave as a function of position
due to the velocity anomalies iz the medium.
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The approximations just described allow us to take an initial value for the
wave function and propagate the wave through an arbitrary number of phase-screens
to find its value at any z. Furthermore the extension to vector elastic waves is obvious:
given the displacements at z = 0 we can uniquely decompose them onto the set of S
and P waves which have propagation vectors pointing into the right-hand cone. We can
thus evaluate the displacements at z = Az_, modify them at z = Az, with separate
phase factors using the appropriate phase velocity for each, and then propagate the
wave, according to the uniform vector wave equation, to the next phase screen where
the process is repeated. Detailed formulas are given in the next section.

We should remark here about the relation between the explanation of the
phase-screen method we have just presented and another, slightly different discussion
the reader may have seen elsewhere. Sometimes the starting point for explanation of
the phase-screen method is to write the field as

$lz.y,2) = Y(z,y, 2)e’, (4)
where

ks T (5)

o | &

and ¢ is a slowly varying function of z. This leads to the replacement of the wave
equation

3
Vi + %é =0 (6)

with the “parabolic wave equation™

J w ol
’; 1k, = -y ] ; 3 O EA T
[v. + 2k, 5+ (ﬂ—w‘, ——é,) v(z.y.2) =0 (7
whesre
vl <o+ a. (8)

&
2
A
#
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The problem is thus made parabolic by modifying the dynamical equation to be first
order in z so specifying ¢ at one value of 2 determines the solution.

In addition to this modification of the wave equation, the phase factors that
correct fur the velocity anomalies of the medium are generaily taken to be independent
of k, and k,. These approximations are justified for ¢ither scalar or vector waves
provided k, and k, are i fact small compared to w/g, w.iere & generically represents
either of the two average phase velocities for the vector wave case. By dimensional
analysis, k, and k, are inversely proportional to the leng: : scales in the plane normal
to the z-axis. Thus if these lengths are large enough, ..ie approximation is valid.
We have found, based on the comparison of the phase-s “een method with an exact
solution, which we describe below, that using the &% .niform wave equation, and
phase factors that depend on k, and k,, allows us t¢ -ccuraicly calculate propagation
for slightly smaller structures. Certainly larger atructures will lead to better resuits
since waves propagating at large obliqu. angles 2.« apt to induce backscattering, which
is not accounted for in the formalism. For large enough structures, the parabolic
approximation is recovered by expanding cur results for small k,, k.

A slight variant of the method has been used before in seismelogy. addon
and Huseby [1978] used what amounts to a phase-screen calculation combined with a
stationary phase (ray) approximation, Mercier [1961], to calculate propagation into the
NORSAR array. The combination of phase-screen and stationary phase appraximation
produces the thin lense approximation of geometrical optics. They considered only P
waves. The method described here could be used for the same situations inclvding
both S and P waves.

Until now we have simply generalized :he phass-screen approximation for
scalar waves in an ohvious way to account for the two phase velocities, and avoided
making the parabolic approximation to the wave equation. Regardless of whether
we employ the parabolic appraximation er not, this leads to significant consequences
regarding the conservation of energy. Certainly il a wave is multiplied by an overall
phase, energy will be conserved. However, if individual contributions to ths total wave
are multiplied by different phases, the energy of the subsequent wave will not be equal
to the energy of the original wave; interference terms will result. Indeed this is the
case if we naively multiply the S and P waves by different phase factors. Afthough thi
violation of energy conscrvation is quite small at cach phase sercen using prrameters
for which we expect the method to be valid, the cumulative result of propagating the
wave over distances of say 1000 km is significant. It is also particularly disconcerting
that energy may be gained as well as lost.




To remedy this problem while maintaining the spirit of the method, we mod-
ify the method described thus far in the following way. First, we find the recursion
relations that express the Fourier coefficients of the wave after it has passed through
the screen in terms of the Fourier coefficients of the wave before the screen and the
phase factors which modify the wave at the screen. The recursion relations are conve-
niently expressed in terms of a matrix multiplying the column vector of old coefficients
to produce the column vector of new coefficients. These are vectors and matrices in
the space of Fourier modes, not spacetime. Thus if V, V', and U are the old vector,
the new vector, and the recursion matrix respectively, then

V) = UnnVa, (9)

where we are employing the convention that repeated indices are summed over.

In principle the vector space we are dealing with is infinite dimensional,
however, for practical computational purposes it must be truncated. The second step
of the algorithm is to neglect the evanescent modes, keeping only the finite number
of modes with harmonic z-dependence. This s reasonable for two reasons. First,
we are interested in propagation distances for which the evanescent modes have been
exponentially damped. And second, as we will show later, the evanescent modes do
not contribute to the energy. In fact, the energy flux in the z-direction averaged over
time and the coordinates perpindicular to the z-axis is simply the norm squared of
the vector of Fourier coefficients corresponding to the modes that propagate.

The condition that energy is conserved across the phase screen is that U be
a unitary matrix, t. e. it must preserve the length of the vector. This, however, is not
the case when we naively multiply the S and P waves by individual phases, although
for cases of interest it is almost unitary in the sense that its eigenvalues are almost of
unit modulus, and the commutator of U with its adjoint has small entries. ! Thus
the third step of the algorithm is to make U unitary. The procedure used to modify
the matrix will be described later in full detail.

We are now ready to move on to the details of the method, which will be
organized as follows. In chapter 2, we present the general theoretical details of the
3D method. In particular, the general recursion relations that determine the Fourier
coefficients of the succeeding wave in terms of the Fourier coefficients of the previous
wave and the A-phases, ¢. e. the phases that modify the wave at the phase screen, are

1The necessary and sufficient conditions for a matrix to be unitary is that it commute with its
adjoint and have unit modulus eigenvalues.
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derived. With these recursion relations, an incoming source wave may be iteratively
propagated through an arbitrary number of phase screens.

Also in chapter 2, we derive a general criterion to specify the number and
spacing of phase screens to be used. The basic iuea behind the criterion is that for fixed
observation distance the phase-screen solution should converge to a fixed answer as the
number of phase screens are increased. This is analogous to the calculus of integrals
where as the interval is broken up into smaller and smaller regions the convergent limit
is obtained. ? To optimize computer time, we are interested in finding the marginal
number of phase screens needed such that the answer converges to its asymptotic limit
to within a fixed tolerance. The criterion is cast in the form of a Cauchy condition
for sequences; two successive terms in the sequence are compared to determine how
well the sequence is converging.

Finally in chapter 2, the time-averaged energy flux is computed in terms
of the Fourier coefficients of the phase-screen solution. As mentioned previously the
displacement decomposes naturally in terms of S and P waves; each mode is repre-
sented by a Fourier coefficieni. This allows the energy contribution from each mode
to be calculated. These quantities will be useful to determine the magnitude of P to S
conversion, and vice versa, and which features of the medium dictate the magnitude
of the conversion. Included in this discussion is the matrix formulation of the method,
and a detailed description of the numerical procedure for making the recursion matrix

unitary.

In chapter 3, we test the applicability of the method for a 2D sample problem
whose exact solution is also calculated. This provides a check on the method and some
guidelines to follow concerning the range of parameters for which the approximation
is valid. This will help in the extrapolation of the phase-screen method to problems
whose exact solutions cannot be obtained. The actual comparison is made in two ways.
First, by plotting the cartesian components of both solutions for various parameters
of the problem, and second, by computing the average of the norm of the difference
of the two wave vectors. To perform these comparisons more efficiently, we first
determine the marginal number of phase screens needed such that adding additional
phase screens for fixed observation distance does not significantly improve the answer.

Chapter 3 is concluded with an examination of energy flux conversion for
the test problem. Using a single phase screen, we extremize the S to P and P to
S conversion as a function of the ratio of the width of the regions to the free space

?Indeed the limit as the distance between phase screens approaches sero has some resemblence to
the path integral approach to wave propagation, neglecting backscattering, Dashen [1979] and Flatté
[1983).
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wavelength for various ratios of the two sound speeds. This will indicate which wave-
lengths, or equivalently what structure sizes, induce the most conversion, and how it
depends on the velocities. S

In chapter 4, the phase-screen methed for random media is discussed, and
the details of some specific examples are given. We are primariiy interested in the rate
of conversion when the medium is characterized by random velocity fluctuations, and
how it depends on the frequency, the corselation length, the velocity fluctuations, the
distance of propagation, and the type of initial disturbance. in particular, we model a
two dimensional random medium with only one length scale by randomly aligning the
phase screens and ensemble averaging over realizations. Each realization is specified
by a set of computer generated psuedo-random numbers that duteimine by how much
each phase screen gets shifted. We find that the rate of energy conversion has a robust
dependence on the magnitude of the velocity fluctuations and the structure size, and
to a lesser extent on the frequency and whether the initial disturbance is a P wave or
an S wave. We also find that the energies tend to constant equilibrium values after
propagating a distance far enough, depending -on the parameters which determine
the rate of conversion, and that the equilibrium ratio of S wave to P wave energies
is roughly given by the ratio of the P wave to S wave phase velocities. Aithough
this is merely a precursor of the actual 3D problem with multiple length scales to be
investigated, it demonstrates ¢he applicability of the method to address questions of
discrimination.

And finally, in chapter 5 we draw some conclusions from our exercises, and
discuss work currently in progress, which will utilize the the techniques developed
in this report to address more pertinent and realistic problems related to seismic
discrimination.
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SECTION 2
THE METHOD

2.1 DERIVATION OF THE RECURSION RELATIONS

The phase-screen method may be formulated as an initial value problem.
Between any consecutive pair of phase screens the uniform elastodynamic wave equa-
tion for the displacement vector, using the average values for the parameters of the
medium, is solved. The unique solution in that region is determined by specifying
the initial value of the displacement on the first of the two screen. This initial data
is obtained by evaluating the displacement in the previous region at this screen and
modifying the phase by a position dependent phase factor. The solution in each region
may be expressed as a Fourier expansion, decomposed into S and P waves. The Fourier
coefficients of the successive solution may be determined in terms of the Fourier co-
efficients of the previous solution and the phase factor. Thus by knowing the initial
displacement produced by a source, the displacement after N phase screens may be
recursively determined.

The elastic wave equation for the displacement vector in a uniform medium,

and in the absence of external forces is

u

Frrie sV + (A + p)V(V-u), (10)

where u is the displacement vector, p and X are the average Lamé moduli, and p is the
average density of the medium. The linearity of this equation allows the solutions to
be decomj.used into S and P waves. Thus the displacement vector may be expressed
as the sum

u =up + ug, (11)

where the two pieces are chosen to satisfy the constraints

Vxu,=0 (13)
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V.ug=0. (13)

It may readily be shown that this separation can always be accomplished, and that it
is unique. Using this decomposition the wave equation reduces to two simple homo-

geneous wave equations of the form

1 Pup
aam -V (14)
doe -V us (19)

where ¢cp and c¢g are the mean propagation speeds for the respective disturbances,
given in terms of the density and Lamé moduli by

o= (45)"
es = (s) m. (17)

The general form of the solution of the these equations that propagates in
the forward direction is

u(r,) = [ dkidk, [epdlk, k)™ + 5Bk k)T, (19)

where A(k,,k,) and B,(k,,k,) are Fourier coefficients for the P wave and the two
polarizations of the S wave respectively, and r = (z,z). There is an implicit sum
over a from | to 2 in this expression, following the standard convention of summing
over repeated indices unless otherwise specified. For simplicity, the factor of e~
will be suppressed throughout the rest of the analysis since all of the solutions we are
interested in here will have the same time dependence. Note that the three dimensional
Fourier expansion, which is typically used to express solutions of this type, has been
reduced to a double integral by use of the dispersion relations, which allow the wave

vectors to be expressed solely in terms of &, and &, as
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kp = (ks ky, (w*/ch — k3 — k:)m) (19)

kg = (ku kﬂ! (w’/cg - "i - k:)llz)' (20)

The longitudinal and transverse unit vectors, ép and &3, are defined such that the
constraints of eqs. (12,13) are satisfied, ¢. . kp x ép = 0, and ks - é§ =0, a = 1,2,
The unit vectors satisfying these constraints are

, 3 ¢
ép=kp= f(k,,k,,k,,) (21)
A & ¢ c! kz
= 1238 8 SSony-1gg, 0,k 22 .
)\
ks x & ¢ ctk? w?
52 _ NS s _ts $™uy-1/2 hedE % SN
€s = ks x & = .‘D‘i(l - ‘J!) (ks ] kys —kyksa), (23) |

where kp, and kg, are the 2-components of eqs. (19,20) respectively.

For a given set of Fourier coefficients, propagation between the phase screens
is accomplished using eq. (18). Let us now introduce a phase screen at z = Az to
compensate for the previously ignored detailed structure. Schematically, if the initial
displacement vector, u(®, is specified, then the resultant displacement vector beyond
the screen, denoted by ult), is

UM ,ane, = ul,ca,_etdl0), (2¢)

The superscripts on the u's will be used to indicate the number of phase
screens the wave has been propagated through. The solution for any value of the
superscript takes on a slightly modified form of the general solution of eq. (18). After
N phase screens the displacement vector is

u(ﬂ)(r) = / d’k{ ép A‘"’(k.. k,) citrals=Naa)
+ &3 BLN)(k“ k,) ei‘s.(o-ﬂh)} lertibyy (25)

n




The Fourier coefficients have been defined with the exponential factors that depend
on N already factored out to simplify the initial value equation at z = NAz.

At this point we depart from the traditional phase-screen approximation for
scalar waves, which has been realized, as in eq. (24}, by multiplying the entire wave of
the previous region by an overall position dependent (but independent of &, and k)
phase to provide the initial dats for the solution in the next region. In our approach
we will multiply the longitudinal and transverse contributions by different A-phases,
which depend on the appropriate phase velocity for each.

Furthermore, each Fourier mode is multiplied by its own phase factor,
5. e. the A-phases depend on k, and k,. This simply reflects the fact that the phase
the wave accumulates from propagating some distance in the z-direction depends on
the angle, relative to the z-axis, at which it propagates. This angle is given by

arctan((k] + k) /(w?/c* — k] - k)1%). (26)

For small angle propagation the phase is, however, independent of the angle to first
order, and hence independent of k, and k,. This is satisfied if k,, k, < w/¢, such that
k, =2 w/c. This will be true for either scalar or vector waves if the typical length scales,
in the plane perpindicular to the z-axis, are much greater than w/c¢ (¢ represents either
the transverse or longitudinal speed for the case of vector waves). We are, however,
interested in problems of elastic wave propagation with length scales, frequencies, and
speeds that do not strictly satisfy this condition, and hence the phase accumulated is
not independent of k, and k,.

Incorporating these two extra features, if A(N-Y(k,,k,) and BN-Y(k,,k,)
are the coefficients of the expansion of ul¥~!), 1, e. the wave having been already
propagated through N - 1 phaze screens, then the initial value equation for u'¥) may
be expressed as

()l pense, = / &k {2 AW-V(k, k) 8 brs)
+ 8 BY kg by) 0T s fgilomeiber,(g7)

wheve the uniform phase that was acquired in propagating from (N - 1)Az to NAz
has been absorbed into the definitions of the A-phases.
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The coefficients A(N)(k) and B{M) (k) may be determined in terms of A(¥-1)(k)
and B{"-)(k) and the A-phases by setting the RHS of this equation equal to the RHS
of eq. (25), evaluated at z = NAz, and then multiplying both sides of this new equa-
tion by e~"*:2-%,¥ integrating over z and y from —oo to +00, and projecting onto the
appropriate polarization vectors defined above. The result of this procedure is

A(N)(k” k) = ksfﬁp / dz dy / Bk elka-he)ztilky-kyy

{‘s - ap(kL, ) ANk, Ko R A )

7y

+ f‘s . ég(kl" %)B&N"”(k;,k;)e"Am(*'-"‘;"")} (28)

BLN) (kzykv) = ;.c-s—f—g;/dz dy/dzkl el'(i'g'la)l'ﬂ(&"-‘h,)v (;s % eg(k'" k")) .
{(E,, x p (KL, ky)) AN -D(K,, & Jo'a 7 1Kk 2)
+ (e x ‘5("1~'=L))B§"'"(k:,k',)e‘é"’w.a;.:.u)}» (29)

where the vector products may be determined from egs. (19-23).

As a quick check that the results of eqs. (28,29) are sensibiz, mote that if the
A-phases are independent of z and y, then the z — y integration may be performed
to yield a product of delta functions of K, — k, and k) ~ k,. The integral over d*¥
may also be performed now. replacing k' everywhere with k. Evaluating the vector
products, it becomes clear that the contribution to A™) involves only A'¥-%), and not
BIN-Y, The analogous result is true for each of the B{! as well. This shows that if
the medium is truly uniform, there is no interconversion between the P and two types
of S waves. However, if the A-phases do depend on the £ — y coordinates, as they
will for interesting problems, the coefficients of the P wave after the N'® phase screen
depends on both polarizations of the § wave and the P wave of the preceding region;
a similar result is true for the S waves as well. Thus the A-phases encode information
about the scattering and wave type conversion as the wave propagates through an
inhomogeneous medium.

13
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The A-phases at the N'® phase screen in terms of the velocity anomalies

between (N — 1)Az and NAz are

30
(N-1)As cp + écp(z,,2) ’ (%0)

o 3 /2
A(P)(k"k., z,y) = dz' [( = ) - k: - k:]
and a similar expression with P— S. At this point the phase-screen method has been
reduced to finding expressions for é¢p(z, y,2') and bcs(z,y, 2') for the physical prob-
fem, and specifying the initial form of the wave. In the next chapter we will look at
a particular example where their spatial distribution is given deterministically from

the medium. Eventually, however, they will be treated as stochastic quantities. First,
however, there are som= further general results to be obtained.

3.3 MARGINAL NUMBER OF PHASE SCREENS

To determine the number of phase screens to be used, a self-contained
method is needed. In the next chapter we will have an exact solution with which
to compare. We could increass the number of phase screens per observation distance
until the two solutions agree as well as they will. For most problems, however, the
exact solution is not accessible. We will determine the marginal number of phase
screens needed (MNPS for short) such that the phase-screen solution converges to
its asymptotic answer to within some given tolerance as the number of phase screens
are increased. This is self-contained and will optimise computer time, using only the
necessary number of phase screens that yields an answer close to the the asymptotic
answer one would obtain if there were an infinite number of phase screens.

More explicitly, to determine the MNPS, a Cauchy criterion of sorts is used.
The distributions of velocity anomalies are chosen, and then the phase-screen answer

is computed, adding more and mere phase screens for a fixed observation distance.
The MNPS is determined when the norm squared of the difference between succes-
sive displacernent vectors, one computed with K more phase screens than the other,
averaged over z and y, converges to within a specified tolerance.

For convenience, we write the displacement vector as
ul™(r) = [ d {him(k-.l..:) + )ik, k,, 2) + 5&{“’(&..&,.:)} gilesriby
(31)

T
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where the superscript M in this expression denotes the total number of phase screens
used for a given observation distance. The norm squared of the difference of two
displacement vectors, both the same except t':at one is calculated using K more phase
screens than the other, is

: [ - -0 = [ e i (uP(k) - uM-P(k))

3 (u{M0(k) = f=(k)) + & (uf0(E) - fM-RI(k)) | eftemriton

+

i = / d*k d*¥ {(ui“)(k) - u‘.““‘)(k)) (“Lu)(k:)- - ui“"‘)(k')')

+ (uﬁ“’(l:) - t“('M-n\')(k)) (u‘(,“)(k’)‘ - u“"“""(k’)’)
+ (ui“)(k) - uﬁ“"”(k)) (uﬁm(k‘)' _ uﬁ"‘”’(k’)')} oilhe= M)z silt, -0}y

(32)

Integrating this quantity over z and y, and dividing by the length of the interval in
each direction, yields a product of delta functions of the wave rumbers as the lengths
of the intervals go to infinity. The average of the norm of the squared difference,
denoted ANSD, is given by

ANSD(zy) = (’2}1)3/1 "‘ft, dy [ (z,y,2/) - w2, y.2)|"
- / 'k {JulM(k, 27) - M E)k,20)?
ek 2g) - wM Uk, 2P + (WK 2g) - wBE (&, 2) )
{ < tolerance. (33)

The smallest value of Af such that this criterion is satisfied will deterzuiae the number
of phase screens to be used.




3.3 ENERGY FLUX

To conclude the general results, we compute an expression for the time-
averaged energy flux for both the longitudinal and transverse displacements in terms
of the Fourier coefficients of the phase-screen method. The energy flux will also be
averaged over the z — y plane, which aliows the total energy to be expressed as the
sum of the individual energies of the P and the two components of S waves. Thus
as a function of z, the ratios of P to S and Sy to Sy (the two polarization of the S
wave) may be simply determined. Also, the ratio of transmitted to incident fluxes
may be extremised with respect to the parameters of the medium, providing a means
to determine what types of regions produce significant or small wave type conversion.

The energy flux given in terms of the displacement is

Ou o Ou;\ Oy,
3

8:, + 8:; R ! (34)
where u in this expression represents only the real part of the complex displacement,
and the subscripts refer to the cartesian components. Time-averaging this expression
produces

§. ) - <u) Gww’) ~ 5+ 24 tiwu
.Se-éRe{ A(V - u) (wuw]) “;(ax,*ax.-)“""")}‘ (35)

where now u represents the full complex displacement without the time-dependent
exponential phase.

Inserting the displacement, given by eq. (25), into this expression, and av-
eraging over the £ — y plane, the only nonvanishing component af the averaged fluxes
are the zcomponents, which for the N'® region may be expressed as

V2
§‘:‘? = %WQCP e dk (l = %ﬂ:) !A(M(k"*')r (36)
?.’ = ! 2 d’k ‘;fk!‘ e B‘s) k | .
o o WPELE (b o) B LR UL R S
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where @ = 1,2 and |k| = /k23 + k. The limits of integration are due to the fact
that for larger |k| the modes are evanescent, and do not contribute a real part to the
flux, as should be expected for a non-dissipative medium. From these expressions it is
obvious that energy is conserved throughout the region between any consecutive pair
of phase screens. Energy conservation from one region to the next is not nearly so
. trivial, and will now be examined.

3.4 MATRIX FORMULATION AND ENERGY CONSERVATION

The examination of energy conservation is most efficiently performed using
a matrix representation of the recursion relations. Although there exists a analogous
matrix representation in three dimensions, and a generalization for continuous values
of the wave number, {or the purposes of the rest of this report, and to clarify the details,
i we shall consider two dimensional media with periodic boundary conditions in the z-
' direction. The 2D problem may be recovered as a special case of the 3D problem by
setting k, = 0, and the periodic boundary conditions replace the continuous variable
k, with mx /2d, where the period is 4d and m is an integer; the corresponding integrals
are replaced with sums. The Fourier coefficients B,,, decouple from A, and By, in
the recursion relations when k, = 0, and hence will be set to zero.

A e MR 0, = iy e @ e e gt

Dropping the ‘1’ subscript from Bya, we shall rescale the Fourier coeflicients

as
a3\ M2\ "2
A‘.‘l"m(e»(lg(%%)) ) AW (38)
‘ g\ M3\ "3
B — (cs (xu(’;;:f)) ) B, (39)

and define the vector of Fourier coefficients

< ‘ T

! W = (A% AL AL A LA YL B, B, B, L BE))
(40)

where Afp and Afs are the greatest integers less than 2dw/xep and 2dw/res respec-
tively, and T deootes the tranzpose of the row vector. Only the modes with harmonic

R Ty LT Y PP KHPYEE
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s-dependence are included in this vector. For integers larger than these values the
modes are evanescent, and will not be inclv ed. This vector may be written schemat-

ically in block form as
AQ')
ViV = , 41
oy (Bgm) )

and the matrix that represents the recursion relations may also be expressed in block

form as
vz urs
U=( )» (‘2)

Ll 4 L1 g
U” UW

where the integers m, n range from —Mp to +Mp, and the integers i, v range from
-Ms to +Ms. The off-diagonal blocks represent conversion of one type of wave into
another; their explicit form will be determined shortly. The recursion relatioas for the
Fourier coeflicients may now be expressed as

A ULl vk [ alvv
B™ Ut uss BN~
where the summation convention is employed, or equivalently as

[Vidly = gpiv -y, (¢4)

In addition to setting &, = 0 and making k, discrete, the O-phases may be
expanded ia Fourier scries as

GaSte) o 37 pi) et (45)

and a similar expression for the S wave A-phase. Cambining this information with
eqe. (28.29) yiolds

18
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Ul = ( n%f’i') o\ 1 Y Dis.»)-v' (49)
SO (-(45E)) (- (4)) e ()
The total energy flux in the N'® region, averaged over time and the z-
coordinate, is
B = Spur iy, (50)
This simple form was made possible by the rescalings of the Fourier coefficients in
eq3. (38,39). The energy of the P wave is given by the first 2Mfp + 1 terms of this
expression, and the energy of the S wave is given by the remaining terms. Using the
recursion relations this may be re-expressed as
1 AN= -
57 = Seut(vin- ity ), (51)
Thus {er energy to be conserved from one region to the next the recursion matrix U
must be unitary, & . if / is defined to be the identity matrix, thea
Vu=ultsl. (53)
19
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For general A-phases the recursion matrix is not unitary, although for the
range of parameters for which the phase-screen method is expected to be valid, it is
almost unitary. Almost unitary is defined to mean that the eigenvalues of the matrix
are close to being unimodular, and the commutator of the matrix with its adjoint has
small entries. Although the violation of energy conservaticn at each phase screen may
be less than a tenth of a percent, the cumulative energy violation after propagating
through a thousand phase screens may be significant. To remedy this problem we
have employed the following algorithm.

First, the complex vector [V} is written as a real vector of twice its original
length simply by entering the real and imaginary part of each complex entry as pairs of
entries in the real vector. The complex matrix U is also put in real form by replacing
each complex entry U;; with the 2 x 2 block

( ReU;; —ImU;;
(53)

I mU;,- RCU“"

If the real matrix corresponding to U is denoted by R, the condition for energy to be
conserved is that R be an orthogonal matrix, defined to satisfy

RTR=RRT =1 (54)

The second step of the algorithm is to perform a singular value decomposi-
tion of R, 1. e. write

R= 01D02 (55)

where O, and O, are orthogonal matrices, and D is a diagonal matrix whose entries are
the singular values of R. The singular values of a matrix are the positive square roots
of the eigenvalues of RTR. This decomposition must be performed by a numerical
routine in practice. The matrix R can be said to be almost orthogonal if its singular
values are all close to unity. To make R exactly orthogonal we simply replace D with
the identity matrix I. Thus

R — 0102, (56)
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which is clearly orthogonal since O; and O, are both orthogonal. 1
At this point we have the necessary machinery to work on specific problems,
: which is what we will turn to now.
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SECTION 3
COMPARISON WITH AN EXACT SOLUTION

We shall illustrate the phase-screen method for a problem whose exact so-
lution is tractable without being trivial. The test problem we have chosen, shown in
figure 3, is to solve for the elastic displacement vector in a two dimensional medium
constructed from two different homogeneous strips of equal width, repeating alter-
nately and infinitely in the z-direction, and of infinite extent in the z-direction, taken
to be the forward direction of wave propagation. We shall center the origin at the
mid-point -of region one, and by convention let the regions both be a distance 2d wide.

The exact solution for this problem is calculated first, and then the phase-
screen approximation is computed and compared to it. We shall use this comparison
to quantitatively understand the limitations of the method. In particular, we examine
the limits of the region widths, the magnitudes of velocity fluctuations about the
mean, and the propagation distances for which the approximation is valid. We also
provide some explanation for why these limits exist. This analysis will yield some
guidelines for the range of parameters over which the phase-screen method may be
trusted for problems whose exact solutions are not accessible.

Also, the ratio of the flux for a transmitted S wave to the flux of an incident
P wave is extremized, for a single phase screen, with respect to the ratio of the width
of the regions to the free space wavelength. This analysis is performed for varicus
ratios of c¢p/cs. The same result is computed for an incident S wave and transmitted
P wave. This result yields insight into the wavelengths, or equivalently structure sizes,
that contribute the most to wave type conversion, and the dependence on the wave

speeds.

3.1 THE EXACT SOLUTION

We begin by presenting the exact solution to the problem stated above.
By “exact” we mean that there is no fundamental approximation made for the wave
equation or the boundary conditions used to solve this problem. Some numerical work
must be performed, however, to obtain the final result, which cannot be written in
closed form, but the solution may be determined to any desired accuracy.
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The ;pracedure for sdlving this problem is relatively straightforward. First,
‘the homogeneous wave equation is solved in each region. Then these aolutions are
mmatched together, determining the unique solution, by satisfying the ‘boundary .con-
«ditions-at (the intetfaces and the initial condition for the wave.at z =:0.

To simplify :finding the solution, the symmetries of the problem may be ex-

;ploited. First, the;medium possesses periodic translation invariance in the z-direction.

Any :pair of neéighboring regions, Jabelled .one .and two, are indistinguishable from all

H -other-such :pairs. (Only the solution in .a:fundamental pair of regions must ‘be calcu-

lated; the ‘bonndary conditions.are maiched only at the interface beiween these two
regions. Theadlutions in all.other pairs of regions are identicdl to this one.

‘Second, the medium .is ¢leatly invariant under reflections about the z-axis.
Solutions may ‘be separated into parity eigenfunctions that are either even or odd as
z — —2z. Hf.even and odd parity solutions exist and may be treated separately in each
region, the number of unknowns to solve for .in the boundary value equations will be
L' reduced by a factor of two. Clearly the solution in the region centered on the z-axis,

from z = —d to £ = d, may be separated into.even and odd parity eigenfunctions. We
shall.now argue that the solution in all of the other regions must be of the same parity,
when expanded about the midpaint of that particular region, as the one centered.an
the z-axis.

Lf ‘Refering to figure 3, parity sbout the z-axis alone only guarantees, for ex-
ample, that the solution between £ = d and z = 3d is an even or odd reflection of
the solution betwaen z = —3d and 2 = —~d. However, if we simultaneously invoke
translation invariance, there is also parity invariance about all of the lines parallel to
the z-axis and centered at the midpoint of each region. Furthermwre, the parity of the
sdlution about these lines muat be the same, cither even or odd, in all of the regions,
for the solutions to match smoothly at the interfaces.

To see that these statements are true we argue that the converse results
Jeads 'to contradictions. Suppose the solutions in the regions from 2z = d to 2 = 3d
and fsom 2 = ~3d to £ = —d reapect the parity symmetry about the s-axis, but
not abaut the lines centered at the midpoints of the two regions. It is trivial to see
that these solutions cannot be identical. This contradicts the asumption that there is
Acanslation invariance. Pushing this argument slightly further, suppose the solution i
ip the region frtom £ = ~d to £ = d has a particular parity about the s-axis, and
ithe solution in the region from £ = d to z = 34 bas the opposite parity about its
smidpoint. The solution in the region from £ = ~3d to 2 = ~d that is identical to the
solution in the segion from 2 = d 10 2 = 34 cannot join amoothly to the solution in
fegion one at £ = —d, 4. ¢. the derivative of the displacement with respect to = will
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be discontinuous there. Thus the boundary condition involving such derivatives will
not be satisfied, and hence this is not a valid solution. These arguments are trivially
extended to the other regions as well.

Combining these symmetries, we may arbitrarily choose the fundamental
pair of regions to be the one between £ = —d and z = 3d; the solutions in these
two regions may be separated, both into either even or odd eigenfunctions, expanded
about the midpoint of that region. For example, the z-dependence of the sclution
between z = d and z = 3d may be expressed in terms of either even or odd functions
of the argument (z — 2d). The boundary conditions at the interface of these two
regions have thus been greatly simplified.

The wave equation to solve is the same as eq. (10) except that here there are
two regions, each with their own densities, elastic moduli, and hence wave velocities.
In each region the general solution corresponds to that of a homogeneous displacement
wave. The general solution in region one may be expressed as

wilr) = [ dk, [2p, (k)™ " + &5, By (K)o 7], (57)

and to obtain the solution in region two simply let 1 — 2 and z — (z — 24).

To solve for the coefficients of the expansion it is necessary to match the
boundary conditions at the interface. It is worth noting that we have written the
expression above in terms of &, instead of k, as for the phase-screen case to simplify
matching the boundary conditions for all values of z. Using the dispersion relations,
the wave vectors in each region may be written in terms of k, as

kp, = ((w:/c}'. - k:)‘n'ka) (58)

ks, = ((w/c} - k1), k,). (59)

As discussed, the solutions may be separated by their parity. Note that in
order to satisly the canstraints of egs. (12, 13), if the z-component of the displacement
vector has a particular parity, the z-componeat must have the opposite. Thus thereare
only two parity eigenfunctions that the solution may decomposed into, which for the
sake of convenience will be labelled (even,odd) or (odd,even) according to whether the
z-component has even or odd parity respectively. Note also that the initial condition
chosen must be consistent with the parity of the solution, ¢. ¢. if the incoming wave
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is a uniform plane P wave, the solution should have even parity for the s-component,
and if the incoming wave is a uniform plane § wave, the solution should have even
parity for the z-component. We will examina the latter case first. For simplicity, the
following definitions will be used:

e (i-22)" @)
ek
b = " (61)
- erk
«=— (62)
12 1/

where the subscript refers to region one or two. Using these definitions the solution
in region one with (even,0odd) parity may be written as

wyir) = /dk{{?a, cos (wayz/cp,) + keyisin (wa;z/cp,)] A (k)
+ [ib. cos (wdyz/cs,) — kdyisin (wd,z/cg,)] B;(k)}e‘". (64)

There is a similar expression in region two with 1 — 2 and z — (z - 2d). All of the
square roots denote the principal value of the complex square root, and k& > 0 since
only the forward wave is included.

Now we will proceed to determine the unknewn coeflicients by eolving the
boundary conditions at * = d. There are two vector boundary conditions at the
interface to be satisfied. First, the displacement must be continuous at the interface
to insure that the velocities are finite everywhere. And second, the traction (the
normal projections of the stress tensor) must be continuous there as well to avoid
infinite accelerations.

Continuity of displacement, u;(d.) = uy(d, ), yields the following two equa-
tions:
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ay cos (wayd/cp,) Ay (k) + by cos (wdrd/es,) By(k) =

a3 cos (wayd/cp,) As(k) + by cos (wdzd/es,) By(k) (65)

(] sin (wald/cp,) A (k) - d; sin (Wdld/CSI) Bg(k) =
el | sin (wagd/Cp,) A:(k) + dz sin (wd;d/cs,) Bz(k). (66)
Similarly, continuity of traction at z = d, T}'(d-) = T;'(d,), yields two equations.

First, the normal projection of the stress tensor may be written in terms of the dis-
placement as

oy’ au‘). -

T“=-—A6"'V-u—u(&- -8_3:

To clarify the notation, all superscripts here refer to cartesian components of tensors
or vectors, and z! = z, z? = z. The subscripts, as for the displacement vector, will
refer to the particular region. Using the expression for the displacement, eq. (64), the
two traction equations are

2 i
" {:;a:c; cos(wayd/cp,) A (k) + ;;(53 ~ d}) cos(wd,d/ cs;)Bn(k)} =
] )

™ {:%a,c; cos(wazd/cp,)Aa(k) + ;:—;(b: - d}) cos(wdgd/cs,)Bg(k)} (68)

1 . 2 .
oy [2;:;0{ + Ag] sin(wayd/cp,) Ay (k) + ;;-md;bg sin(wdyd/es,) By(k) =
4 )

- ;L [2u10} + Ao} sin(wasd/ep,) Aa(k) - 2 psdsbysin(wdrdies,) Ba(k). (69)
P R

There are four sets of unknown Fourier coefficients, and one set of discrete
wave numbers to solve for. We will divide the four boundary condition egquations
arbitearily by By(k), use three of the equations to solve for 4,/ By, By/ By, and Ay /By,
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and then insert these expressions into the fourth equation to determine the discrete
eigenvalues allowed for &, labelled k., where m is an integer. The remaining set of
discrete coefficients, { By} = {By(km)}, specifies the shape and overall normalization
of the displacement wave, which is given by an initial condition that we will choose at
2=0.

As will be shown shortly, the eigenvalue equation is a transcendental equa-
tion, making it necessary to solve for the eigenvalues numerically. This forces us to
choose specific values for the parameters of the problem. A choice that simplifies the
algebra considerably is to let A; = A\; = 0 and y; = p;. The densities of the two
regions must be different to have an interesting problem, but by making this choice
for the elastic moduli, their explicit dependence cancels out of the transcendental
equations, and ounly the phase velocities need to be given numerical values.

The four equations are divided by B,, however, the solutions of the first
three equations for A,/B,;, By/B;, and A;/B; are all divided by the determinant of
the matrix of Cramer's rule when solving a linear system of equations. We will absorb
this determinant into the definition of By(k), and drop the subscript so that we may
write the solution in a symmetric form for the two regions. Using the first three
boundary conditions, along with the choices for the Lamé moduli just mentioned,
some tedious but straightforward algebra yields the following expressions:

i

L\(k) = A(k)/B(k) cz(b] — b}) sin(waqd/cp,) cos(wd,d/cs,) cas(wdyd/cs,)
+ aibdysin(wdyd/cs,) cos(waqd/cp,) cos(wd,d/es,)

+ a3bidysin(wdyd/cs,) cos(wayd/cp,) cos(wdyd/es,)  (70)

Ti(k) = B\(k}/B(k) = abeynin(wa,d/cp,) cos{wezd/e,,) cos(wdyd/es,)

+ aybyeysin{wad/cp) cos(wa,d/cp,) cos(wdyd/es,), (T1)

and similar expressions for £y and Ty, but with 1 « 2. T3 is simply the determinant
of the matrix discussed above.

Inserting these expressions into the fourth equation, the transcendental
cigenvalue equation for &k is
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0 = tan(wasd/cp,)tan(wdid/cg,)o;1b1¢1d; + tan(wasd/cp,) tan(wdad/cs,)asbse1dy

+ tan(wayd/cp,) tan(wdid/cs, )asbicad; + tan(waid/cp,) tan(wdad/cs,)asdyeads
+ tan(wayd/cp,) tan(wazd/ep,) (83 - 83) (¢} ~ ¢}). (12)

It has been written in terms of the tangent function by dividing by the necessary
sines and cosines. Writing it in this form simplifies the numerical root finding pro-
cess because the asymptotes of the tangent functions provide natural limits to search
between for the roots. In fact, between any consecutive pair of asymptotes there are
either two roots, one root, or no roots.

All that remains to completely specify the solution is to fix the initial shape
and normalization of the wave, specified by the set of coefficients { B, }. To do this
we will choose that at 2 =0

01(5,0) = ﬂz(z,O) = 1. (73)

This expression yields four equations, but there is only one set of coefficients { Bu}. In
general, cach of these four conditions must be satisfied by a unique linear combination
of complete functions. Each linear combination is specified by the set of coefficients
that gets multiplied to these complete functions. This implies that unless the func-
tions, that have been used to expand the solution, are equivalent to four complete
sets of functions, there is no hope of satisfying the four initial condition equations at
2 = 0; the solution will be over-determined. It is worth noting that the cosine and
sine functions used to expand the solution are not orthegonal {unctions, making it
impossible to determine by casual inspection the number of complete sets of functions
they comprise. However, an examination of the eigenvalues of k reveals that they may
be grouped into pairs. This is much more apparent for the larger values of k. In fact,
the discrete pairs asymptotically approach cither inx/d or i(n + 1/2)x/d. Combining
this with the fact that there are both sine and cosine functions present in the solution
indicates that there are actually enough complete sets of functions to satisfy the initial
condition. Although this is a only a heuristic argument, we can proceed to actually
solve the initial condition to verify that a solution does exist.

Another conscquence of the fact that the cosine and sine functions, used
to expand the solution, are not orthogonal, is that projecting the solution for the
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displacement oato the initial condition, as is done in typical Fourier analysis, does aot
yield the solution for the individual coefficients. Instead we solve for the coefficients
aumerically using a least squares routine. The variable z is first discretised to the set
{z.}, and the sum over the discrete values of k,, is truncated. Also, the set {B,} may
be written as a column vector of dimension M, where M is the value of m at which
the series is truncated. The initial condition may also be written as a column vector
of dimension N, where N is four times the number of discrete values of z chosen,
since there are two spatial vector components in each of the two regions. The linear
transformation that maps the coefficients into the initial condition is an N x M matrix
whose entries depend oa &, and z,,. To salve for the coefficients requires inverting
this matrix, which is performed numerically by the least squares routine. To make
this clearer, schematically the initial condition at z = 0 may be written as

UesU(za) = =

vu /s, n

1
u‘l ? , (7‘)
0

where the subscript n labeis the discrete values of . Thus each entry actually repre-
sents a columnn of N/4¢ entries. Also, the general solution at 2 = 0, may be written in
the form

M
U, = 2 M, B.. (?s)
The solution for the unknown coeflicients { By} is
N
By = EM:U.‘ (76)

Having solved this inversion numerically, and using eqs. {64,70,71), the com-
plete salution for the displacement for ~d < £ < d with {even.odd) parity ls

wir) = z{[h..w (varaz/en) + keyuisin (wayaz/cr, )] Lim
+ [bra con (lhazfes,) = Edrmisin(wdiaz/es)] Tia ) Buc, (1)
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and the solution for d < z < 3d is the similar except with 1 — 2 and z — (z — 2d).

Having calculated the solution above, it is now straightforward to write
down the (odd,even) parity solution. In region one, the displacement is

u(r) = [ dk{[io,isin(wa.z/cp‘) + ke, cos (wo.z/cp,)] Ay (k)
+ [ibyisin (wdsz/es,) - kdy eos (wdrz/es,)] By (k)}e‘“, (78)
and as before, a similar expression for region two with 1 — 2 and z — (z - 2d).

Continuity of displacement at z = d, u,(d-) = uy(d,), yields the following
two equations:

a;sin (wayd/cp,) A: (k) + by sin (wd,d/cs,) By(k) =

- aysin (1 1d/ep,) Ag(k) - Bysin (wdsd/cs,) By(k) (19)

cycos (wayd/ep,) Ay(k) - dy cos (wdyd/cg,) By(k) =

c2co8 (wazd/ep,) Ay(k) — dycos (wdad/eg,) Balk). (80)

Similarly, continuity of traction at z = d, T}}{d.) = T3}{<,), yields

# {?:7 aweysin(wad/en)As(k) + ,%;(b% -d}) ssn(w;d/es;wlm} =

- { L oucintvention)alt) + 216 - d%)sia(wdsdics.)ﬂa(k)} (81)

1 3
. [2ma} + 4] cos(wardfep,) A (k) + b cos(wdd/es,)By(k) =
4

:‘— [2;4303 + Agl cos{wasd/ep,) Aa(k) + 3‘“:4:51 cos(wdidfcs,) By(k). (82)
A €5
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As before, using the first three boundary condition equations, choosing A\, =
A3 = G and y; = g;, and abaocbing the determinant of Cramer’s rule into the definition
of B(k), the coeflicients are

Li(k) = A(R)/B(K) = ca(85 - 8]) cos(waqd/cp,) sin(wdsd/cs,) sin(wdrd/cs,)
+ @ybyd;cos(wdyd/cs,) sin(wayd/cp,) sin(wdid/cs,)

+ ashd, cos(wdd/cs,) sin{waqd/cp,) sin(wdid/cs,)  (89)

T(k) = By(k)/B(k) = asbrescos(wayd/cp,) sin(wazd/cp,) sin(wdsd/cs,)
+ aibeycos(wasd/ep,) sin(wad/cp, ) sin(wdyd/cs,), (84)

and similar expressions for £; and Ty, but with 1 « 2.

Inserting these expressions into the fourth equation, the transcendental
cigenvalue oquation for & is

: tan(m,d/c;\) m(wd@d/cs,)qb\qd; + un(wa,d/cp,) t&n{“;‘,"t;,)l;h‘;‘;

o
£l

+ tan(weyd/cp, ) tan(wdsd/cs, Jasbread, + tan(we:d/ep, ) tan(wd dfes, Jarhrerds

tan({wdid/cs,) tan(wddfes,) (8 - 8)(c; - }). (85)

e

The initial condition at 2 = 0 for the (odd,even) parity case is

uy(2.0) = uy(2.0) = &, (se)

and as belore, the coefficients will be solved for using a least sguares routine. With
these coefficients, the solution may be written &

i
{
i
!
]
]
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u(ry = Z{ [i’a;..i sin (waymz/ep,) + ki co8 (Wa1u2/ch, )] Lim

4 [ibymisin (wdymz/es,) - Edim cos (Wdimz/cs,)] T;...}B..e"". (87)

For any other initial condition that is uniform as a function of z, the solution
will be a linear combination of the displacement vectors given by eqs. (77,87). For
initial conditions that do depend on z, the only change in the solution is that the set
of coefficients {B,,} must be determined in the same manner as before, but for the
new initial condition. This completes the analysis of the exact solution, and we now
turn to the phase-screen solution of the same problem.

3.2 THE PHASE SCREEN SOLUTION

Now that the exact solution has been calculated, we would like to compute
the phase-screen approximation for the same physical problem, and then compare the
two. Figure 4 depicts how the problem will be treated using the phase-screen method.
The wave is propagated uniformly between phase screens, as discussed in chapter 2.
The phase of the wave at the phase screen is then retarded uniformly for values of
z corresponding to region one, and advanced uniformly for values of z corresponding
to region two. Because of the periodicity of the problem, the general solution of the
uniform wave equation, written as a Fourier integral in chapter 2, may be expressed
as a discrete series. Thus the displacement vector between the N*® and the (N + 1)
phase screens may be written as

B(N)(y) = }: { (ic_ + Ea-) A(-N]eiﬂ‘-(a-h‘m”uz
™y

+ (id. - Eb‘) B(-N)em.ga-b‘h)/cg} ee-ufu. (88)

WREre Gu, bt Cs du ar€ Of the same form as those defined in eqs. (60,61,62,63) except
that the k refers to the z-component of the wave vector in this case, given by k —
mr/2d, and instead of carrying a subsript that depends on the wave velocities of the
two regions, there is only one quantity of each type that depends on the average af
either the tranverse ar longitudinal velocities of the two regions.

At this point the velocity anomalics need to be specified for the preblem.
For the P’ wave in region oae

ot A RS FTI am it e ns 8




3d d +d +3d

"_ region 1 -0!4- region 2 -’1

Figure 4. The phase-screen treatment of the test problem introduces
the phase screens, represented by the heavy solid lines. The
square wave shows schematically how the phase is retarded or
advanced at the phase screens.
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¢p + bep(z,2) = cpy, (89)

and in region two let 1 — 2 in this expression. Using eq. (30) the argument of the
A-phase for the P wave is

' A Y

- - - - =

(u_ _ (m)z)l/zAz if d<z<d

7 "\
A (z) = (%0)
2 2\1/2 .
(£-(m)) 8z itd<s<ad

This is actually a periodic function, which simply repeats for the other regions. We
shall express the A-phase as the Fourier series

o ———— i A — .~ = e g

eiA(.P)(z) - Z Dg:n) einrz/Zd, (91)
where for n =0 }

! 2 \? ( 2 2)1/2 !

i 2= (mx A i w3 (max A i
i pi) =1 e(?; ( ‘)) “re\h (32)) o , (92) i
i
i
! and for n #0
‘ _ 2 2 1/2 . . . 1/2

D) = 1 e‘(c‘g‘(’ﬁ”) ) ar '(2};*(%) ) Az smmr/z. (93)
2 nr/2

There are also similar results for the S wave with P — S in the expressions above.

Inserting the A-phases into the expressions derived in eqs. (46-49) produces
the recursion matrix for this problem. Recall that the Fourier coefficients in the matrix
formulation have been rescaled according to (38) and (39). In terms of the notation
used here, the elements of this matrix are
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Note that if the velocities are the same in the two regions, fo,,)‘_,, and D,(,,s,l._,‘ both
vanish for n # m, and there is no conversion of wave type.

To completely specify the solution, the initial coefficients must be given that
correspond to the initial disturbance at z = 0. To correspond to the (even,odd) parity
initial condition of the exact solution given in eq. (73), the initial coefficients are

A% =0 (98)

and for the (odd,even) parity initial condition of eq. (86), let A « B in these two
expressions.

As discussed for the exact solution, for any other initial conditions inde-
pendent of z, linear superpositions of these expressions may be used because of the
linearity of the wave equation. For initial conditions that do depend on z, elementary
Fourier analysis may be used to determine the initial coefficients.

In principle, the phase screen solution for the medium we are interested in
is complete. To actually obtain the displacement after N phase screens requires nu-
merical work to iterate the recursion relations N times. We will numerically compare
the phase-screen solution to the exact solution in the next section.
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3.3 COMPARISON OF THE SOLUTIONS

To compare the two solutions requires numerical routines to obtain both

N solutions, and a method of comparison. Although there are many ways we could
compare the two answers, we have chosen to do so in the following two ways. First,
| the cartesian components of the two displacement vectors at fixed values of 2z are

plotted. Also, the average difference of the vectors at fixed z is computed. Explicitly,
this means that the absolute norm of the difference of the vectors is computed at a
given value of 2, integrated over z, and divided by the length of the interval to obtain
! the average difference.

Before proceeding with these comparisons, the marginal number of phase
screens, discussed in chapter two, must be calculated. For this periodic problem the
Cauchy criterion derived in eq. (33) becomes

ANSD(z)) = o5 [ delu®(z,2) - u-F)(z, )|

= 2 {1ul(zy) - uldUzn)* + uld(zr) - uldz))}

< tolerance, (100)

where
u(:l)(z!) = an(:l)eiwc..q/cp(MN) +d.B,(:‘)e“'d"’l°3(M“) (101)
uff:‘) (2/) = G Agl)et‘w-u/cr(uu) - b B&M)ewd..,/e,(uu)‘ (102)

Note that for M phase screens evenly distributed over a distance 2;, Az = 2, /(M +1).
We have chosen the tolerance to be 0.005 for the following results, and incremented
the number of phase screens by adding 10 for every 50 km of observation distance,
i. e. K = 0.2z is used in eq. (100). Tables 1 and 2 contain the MNPS results for
a series of observation distances using various combinations of the frequency, width,
and magnitude of velocity fluctuations.

From these tables a general guideline for the number of phase screens to be
used may be extracted;
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Table 1. Marginal number of phase screens for ¢, = 3.6 km/s,

s, (km)| 80 100 200 400

w (rad/s) 4 (km)
5.0 100 50 100 200 400

2.5 10.0 60 160 320 800

10.0 5.0 100 200 400 960

5.0 5.0 160 320 800 1600

10.0 2.5 320 800 1600 3840

Table 3. Marginal number of phase screens for ¢, = 3.5 kin/s,
¢s, = 3.9 km/s, ep/es = V3.

z; (km) 50 100 200 400
lf w (rad/s) d (km)
5.0 10.0 170 340 680 1360

10.0 5.0 340 680 1360 3360
28 10.0 240 480 9GO0 2560
50 50 480 960 2560 5120
10.0 238 640 1600 3200
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MNPS = a-k% (%5) , (103)

where L is used here to represent the observation distance, a ~ 2 x 10® is the constant
of proportionality for the tolerance we have chosen, and § ~ 2. For a less stringent
tolerance the number of phase screens needed will be much less.

Using this information, the comparison is made as efficiently as possible. The
parameter space to be examined includes the magnitude of the velocity fluctuations
and three length scales, the wavelength, the width of the regions, and the observation
distance. One of these length scales may be eliminated, however, by noting that the
solution is invariant under rescaling all of the lengths by the same factor. Thus we
are free to fix the wavelength and vary the remaining parameters.

Figures 5-16 contain plots of the real parts of the cartesian components
of the phase-screen and exact displacement vectors, both in the same figures, at a
sequence of observation distances. The solid lines correspond to the exact solution
while the dashed lines correspond to the phase-screen solution; the z-component of
the displacement is plotted above the z-component. Also, the average of the difierence
of the norm of the two vector solutions has been included in the figure captions. For

all of these comparisons ¢p/cs = /2, which was chosen to simplify the analysis of the
exact solution.

These comparisons demonstrate the accuracy and qualitative features of the
method, although we have included only a small sampling. For example, it is clear
that the accuracy of the method decreases for larger observation distances and smaller
widths, as compared with the wavelength, and for larger velocity perturbations. Fur-
ther analysis shows that the quantitative conditions for the method to be valid are

kd> 1, (104)
such that backscattering is small, and
L (6\*
o (_i-) <1, (108)

where again § ~ 2 for the parameters we are using. This latter condition is very
similar to a geometrical optics condition, and is demonstrated by comparing figures 5-
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condition, and is demonstrated by comparing figures 5-8 to 9-12. Since the width in
the latter figures was doubled, the displacement may be propagated to four times the
distance at the same accuracy. Also, comparing figures 9-12 to 13-16 demonstrates
that that doubling the velocity fluctuation reduces the observation distance by a factor
of four to maintain the same accuracy. These relations have been verified by other

similar comparisons.

3.4 ENERGY CONVERSION

We conclude this chapter with an examination of the parameters that induce
the maximum conversion of energy from one type of wave to another. To accomplish
this we maximize the energy conversion across a single phase screen for an incident
plane wave. The dependence of conversion on the velocity fluctuations comes from the
Fourier coefficients of the A-phases, given in eqs. (92,93); the absolute value squared of
these coefficients enter into the expression for the energy. These factors are bounded
from above regardless of the magnitude of the velocity perturbations, and satisfy

|Dmo)? < 1 (106)
|Doal? < = (107)

The dependence on the velocity perturbations is eliminated by using the combination
of the perturbations and Az that give the maximum conversion. Using the recursion
matrix, given by eqs. (94-97), with the optimum phase amplitude on the screen, the
conversion is maximized for various ratios of ¢p/cg with respect to the dimensionless

variable

2dw
X = powt (108)

where tke factor of 2 and = are due to the convention of making each region a distance
2d wide.

Table 3 contains the values of x, labelled Xmas, such that the conversion
is maximized for various ratios of the sound speeds. It illustrates that the P wave
converts energy at a faster rate than the S wave except when the sound speeds are
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equal, and that the length scales that induce the most conversion of either type are
approximately equal to the wavelength of the P wave. This regime is considered
“resonance scattering”, and contributes the most to scattering effects; for x < 1 the
medium is quasi-homogeneous, while for x 3 1 the medium becomes transparent,
Wu (1988). The entries of xmss = 1.00 in table 3(a) are due to the fact that the
conversion is maximized as this dimensionless variable gets smaller, but for ¥ < 1.0,
Mp = 0 (cf. section 2.4), and the recursion matrix becomes trivial, not admitting
conversion. Finally, note that as the ratio ¢p/cg increases, the P wave loses energy
more rapidly, while the S wave loses energy more slowly.

Table 3. Maximum energy conversion from one phase screen for an initial
(a) P-wave, (b) S-wave.

(a)
cpfes 10 v2 20 4.0
Xmas 117 100 1.00 1.00
5758 1031 044 058 0.64
(b)
cples 1.0 V2 20 40
Xemas 117 111 106 1.01
55)/8% {031 024 021 019
53
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Here we apply the phase-acreen method to media for which the position de-
} pendent velocity anomalias, $cp(z, ¥, 2) and écg{z, y, 2), are characterised statistically.
They will be treated as 3er0 mean random variables. Eventually we will employ phase
} screens with multiple wavelengths to describe random inhomogeneities on a variety of

length scales. The random phases for this problem may be computed in terms of the
power spectral density (PSD) of the medium, Knepp {1963] and Martin and Flatté
{1988}, but this will not be done here. Instead we will limit ourselves to one length
scale to obtain the results that follow.

To model a random medium with only one characteristic length scale we
use the same periodic phase screens as were used in the previous chapter, aligned over
some correlation length, but then randomiy shifted by some distance less than the
wavelength of the screen in the z-direction, over the next correlation length. This
process is then repeated to propagate the wave to the observation point of interest.

The number of phase screens used per propagation distance for the random medium
problem will be the same as the MNPS determined for the layered problem, for par-

ticular values of the widths of the regions, frequencies, mean velocities, etc.
In general, a random shift in the alignment of the phase screen relative to

the positioning of the original one is accomplished by letting

An(z) — Aun(z - 4d4), (109)

where = is a random number such that 0 < 4 < 1. Refering back to eqs. (91-97),
the affect of this shift on the recursion matrix is straightforward to determine; the

elements of the recursion matrix transform according to

ULZ — yIF g tmilm=niv (110)
UL — ULJ eminilmvh (1)
{ 54
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USP — USP g73rile-nh (112)

USSP — USS e7¥nle-vh (113)

where again ~Mp < m,n < Mp and -Mg < u,v < Ms.

The transformation that implements the random shift may be represented
as a matrix as well, written in block form as

( e!n'un&”“ 0 )
r= : (114)

0 Mg,

Note that only the diagonal entries are nonvanishing, and there is no implicit sum-
mation in this expression. The transformation law for the recursion matrix under a
random shift is then given by

U —rur (115)

It is casily verified that T is a unitary matrix, or orthogonal when expressed
in its equivalent real form. Thus we need only modify the recursion matrix U once
to make it unitary; all random transformations of the modified recursion matrix will
automatically lead to total energy conservation.

For the simulations we perform, the recursion matrix of the problem in
chapter 3, given by eqs. (92-97), will be employed. The energy flux, averaged over z
and ¢, is computed as a function of observation distance for a number of realizations.
Each realization is specified by a set of computer generated psuedo-random numbers
which determine the alignment of the set of phase screens. We shall then ensemble
average over realizations to smooth out spurious results. In practice, we shall average
over one hundred such realizations.

Figures 17-21 plot the averaged energy flux as a function of distance out to
2000 km, and for a variety of parameters. Although we are not attempting to model
the lithosphere here, the length scales and velocity perturbations are roughly those
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found in the lithosphere at NORSAR, Wu and Aki [1085), where the correlation length
is 10 — 20 km and the rms velocity perturbations are 2%-4%. The total energy flux
has bean normalized to one by dividing by the incident flux. The pairs of figures on
each page are produced for identical media, including the particular realizations that
are used; the upper figures are for initial P waves, while the lower figures are for initial
S waves.

The significant features of energy conversion in this 2D random medium are
that the conversion rate

1. for P to S occurs at a faster rate than for S to P;
2. is approximately independent of the frequency for high frequencies;
3. is inversely proportional to the length scale of the medium; and

4. is proportional to the square of the velocity fluctuations.

These results may be qualitatively compared to the Born approximation
results obtained by Wu and Aki [1985]. The first result is simply due to the fact that
the impedance of the P wave is greater than that of the S wave, and the last three are
typical of high frequency scattering. In particular, the lack of frequency dependence
is easily scen by noting that the displaceinent scales inversely with the frequency, but
the energy flux is given by the frequency squared times the displacement squared,
which does not scale with the frequency.

Finally, the energy plots, particularly figures 20 and 21, illustrate that the
energies of the waves tend toward fixed values if propagated {ar enough. These values
are independent of the initial condiiions, and the asymptotic ratio of the S wave to P

wave energy is roughly ep/es.

For propagation in a 3D random medium, realized in the way described
above, the expected resuit is that the energy will be equally partitioned among the 8
wave polarizations and weighted according to the ratio of the phase velocitics relative
to the P wave.
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SECTION 5
CONCLUSIONS AND FUTURE WORK

In this report we have developed the phase-screen method for elastic vec-
tor wavee, and demonstrated its use to approximate elastic wave propagation in two
dimensions. By comparing with an exact solution we were able to determine the gen-
eral conditions for which the method is valid. The problem in chapter 3 proved to
be quite demanding, particularly on the number of phase screens needed to appraxi-
mate the exact solution. This was due to the fact that the layered structure sllowed
only a small number of the modes to propagate for parameters of interest, inducing
substantial scattering at oblique angles relative to the direction of propagation of the
original wave. For smoother phase distributions, «. g. Gaussian phase screens etc., we
expect that the method will require fewer phase screens, and may reduce to the usual

“parabolic approximation” to produce accurate results.

We also demonstrated how the method may be used to compute P to S
conversion in terms of the averaged energy flux. We found that it is energetically
more favorable for a P wave to convert its energy into an S wave at a faster rate than
for the reverse process, particularly when the longitudinal phase velocity is much
larger than the transverse phase velocity. Furthermore, it was demonstrated that the
greatest conversion occurs for structure sizes comparable to the P wave wavelength.

The application of the method to a random medium was initiated by ran-
domly aligning the phase screens and ensemble-averaging the results. This provides
a genuine first step towards treating a truly random medium problem. The results of
the analysis here showed how the energy conversion again proceeds at a faster rate for
an initial P wave until the energies reach a fixed asymptotic value. The rate of conver-
sion is proportional to the magnitude of the velocity fluctuations squared, inversely
proportional to the structure size, and roughly independent of the frequency for high
frequencies. Also, the asymptotic ratio of S wave to P wave energies is approximately
given by cp/cs. These results indicate that using P—S ratios as a discriminant is vi-
able on regional distance scales of up to 2000 km, provided the velocity perturbations

are nct too large.

Although this work demonstrates many of the strengths of the phase screen
method, it also indicates the need for a great deal of further work to be able to
tackle more realistic problems. The following features to be incorporated into the

phase-screen framework are under current investigation:
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; ? First, the 3D random medium problem with one characteristic length scale is

? being developed. This will allow Sy — Sy ratios as well as P—S ratios to be computed.
Second, the formulation in the time-domain is being developed. This will allow the
behavior of transient solutions to be investigated, and the time delay separating the
P wave-train from the § wave-train to be computed. Third, we are interested in using
. sources with spherical symmetry to model explosions. And fourth, the incorporation
_ of phase screens with all length scales represented, weighted according to the PSD of
| the medium, is under current investigation. This will allow wave propagation through
complex realistic media to be stochastically modeled.

I LS N

PPTRP,
RN 1D

10 e ARy~ o .

The addition of these features should elevate the phase-screen method to
the point where it will be a viable tool for seismic discrimination.
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